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The past decade was marked by a substantial
growth in the development of computational
tools to reveal material properties through scale
transitions. Whereas analytical, closed-form,
and asymptotic homogenization schemes have
been used with considerable success to pre-
dict average or apparent properties of engineer-
ing materials, new perspectives were opened
through the integration and expansion of the
acquired knowledge by making optimal use of
numerical solution techniques. This topic is the
main focus of this Special Issue, where several
techniques are addressed to bridge scales from
microstructure to properties.

Part of the work in numerical homogeniza-
tion schemes has appeared as a natural ex-
tension of earlier work on elastic solids and
composite materials. In here, homogeniza-
tion techniques constituted an excellent tool to
predict the effective or apparent linear elastic
properties of heterogeneous materials. Several
closed-form homogenization techniques were
initially proposed in this context, e.g., the Voigt-
Reuss-Hill bounds, the Hashin-Shtrikman vari-
ational principle, the self-consistent method,

Mori-Tanaka approaches, etc. Asymptotic
or mathematical homogenization schemes have
been used frequently to assess effective proper-
ties of elastic heterogeneous materials, whereby
extensions toward higher-order and nonlocal
constitutive equations have been considered
as well, e.g., the work of Drugan, Fleck, For-
est, Smyshlyaev, Triantafyllidis, Willis, and
many others. Whereas this works reasonably
well for elastic materials, it becomes more and
more complicated for highly heterogeneous
and physically nonlinear materials. Physically
nonlinear microstructures have been addressed
by means of Taylor-Bishop-Hill estimates, sev-
eral generalizations of self-consistent schemes,
and asymptotic procedures (see, e.g., the work
of Doghri, Fish, Ostoja-Starzewski, Ponte Cas-
tañeda, Suquet, and many others).

Extending this further to a geometrically and
physically nonlinear regime is clearly more
cumbersome. Even though some numerical ho-
mogenization frameworks have been proposed
in this sense, a closed-form constitutive equa-
tion was generally assumed, which limits the
applicability if one wishes to
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complex physics, geometrical nonlinearities, or
damage and localization. These complexities
are more easily dealt with by resorting to a full
computational scheme, which enables the two-
scale computational homogenization of com-
plex multiphase solids. This category of tech-
niques is essentially based on the solution of
nested boundary value problems, one for each
scale. If attention is focused on the nonlin-
ear characteristics of the material behavior, this
technique proves to be a valuable tool in re-
trieving the constitutive response. Computa-
tional homogenization schemes that fit entirely
in a standard continuum mechanics framework
(principle of local action) are now readily avail-
able in the literature (see, e.g., the work of
Feyel, Ghosh, Kouznetsova, Miehe, Smit, Su-
quet, Terada, and others). The attractiveness of
this approach lies in the fact that the constitu-
tive response at the macroscale is a priori unde-
termined. No explicit assumptions are required
at that level because the macroscopic constitu-
tive behavior ensues from the solution of the
microscale boundary value problem for which
arbitrary nonlinear constitutive models can be
used for each phase or interface. The solution of
the macro- and microscale problem is a classical
boundary value problem for which any appro-
priate solution strategy can be used (e.g., Finite
Element (FE) Method, Element Free Galerkin),
whereas the required macroscopic constitutive
tangent operators can be obtained from the mi-
croscopic overall stiffness tensor. Recently, an
extension toward a second-gradient continuum
in the sense of Mindlin has been established as
well.

Another well-known class of computational
multiscale methods for the mechanics of ma-
terials are the variational multiscale methods.
Based on a weak form of the governing equa-
tions, scales are separated whereby specific as-
sumptions are needed on the fine-scale field.
Elimination of the fine scale from the ob-
tained formulation constitutes the upscaling

step. Well-known fine-scale patterns (e.g., dis-
placement discontinuities modeled by Heav-
iside functions) can be easily implemented,
showing considerable similarities with solution
methods based on the partition of unity con-
cept.

Even though it is impossible to compose a
Special Issue that covers all these recent trends,
some selected articles clearly reflect the state
of the art in some of these domains. The top-
ics dealt with in this special issue on multiscale
computational homogenization can be summa-
rized as follows:

• Computational homogenization of geo-
metrically and physically nonlinear solids
by means of the numerical solution of
nested boundary value problems

• The Voronoi cell method

• Combined homogenization in space and
time

• Numerical solution of multiscale problems
with embedded scales

• Multiscale analysis through transforma-
tion field analyses

• Solution and application of an extended
version of the Hashin-Shtrikman varia-
tional principle

• Explicit computational determination of
homogenized higher-order elastic con-
stants through asymptotic methods

• Adaptivity in computational homogeniza-
tion, where finer scales can be locally
added if required by the desired accuracy

More details on each of the contributions are
briefly provided below.

A frequently used numerical two-scale tech-
nique is probably the solution of an embed-
ded multiple scale problem, driven by fracture.
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A well-known example is the case were dam-
age develops at a fine scale, leading to com-
plete material degradation, which is captured
by the embedding of a fine-scale discontinuous
field in the coarse-scale solution. An example
thereof is presented in the paper by Garikipati.

Resolving both spatial and temporal scales
is another challenge for which various numer-
ical techniques are, at present, being proposed.
An illustration thereof is provided by Nouy and
Ladevèze, where particular attention is given to
a robust approximate solution of the many mi-
croproblems to be resolved, based on the con-
cept of radial approximation.

As emphasized, physically and geometri-
cally nonlinear and complex multiphase mate-
rials are best treated with a full computational
nested multiscale solution scheme. In this spe-
cial issue, two papers are devoted to this sub-
ject. Carrère, Feyel, and Kanouté propose a
thorough comparison between such a two-scale
nested FE solution framework and a transfor-
mation field analysis framework. Resolving the
explicit role of the size of a microstructure is
one of the great challenges in miniaturization.
Standard, first-order homogenization methods
do not allow one to take this particular influ-
ence into account in a well-defined manner.
Kouznetsova, Geers and Brekelmans therefore
concentrate on the second-order computational
homogenization framework that they have de-
veloped recently, where the explicit role of an
RVE (representative volume element) in such
a second-order computational homogenization
method is investigated and clarified.

A second illustration of the influence of size
is given in the paper by Peerlings and Fleck,
based on a natural extension of classical asymp-
totic homogenization theories. A rigorous link
between two scales has been established for 3D
linear elasticity, whereby a Mindlin-type strain-
gradient continuum has been identified. All
elasticity constants in this enriched continuum
can be determined by means of the solution of a

series of microstructural boundary value prob-
lems, as shown in the present paper.

Adaptivity is another aspect of great rele-
vance in a computational multiscale model. An
example thereof will be given for a composite
material, where fiber-matrix debonding leads
to engineering damage. A three-level approach
with geometrically nested scales is here pro-
posed by Ghosh and Raghavan, where each
scale enters the solution algorithm in an adap-
tive manner. The combined and adaptive use
of coarse-scale solution techniques (i.c., FEM)
and a fine-scale algorithm (i.c., the Voronoi cell
method) is thereby the key issue.

In some cases, the variational principles of
Hashin and Shtrikman provide an interesting
option to solve two-scale computational ho-
mogenization problems in an uncoupled man-
ner. An illustration thereof is given in the paper
of Šejnoha, Valenta, and Zeman, for statistically
homogeneous composites, where an extension
is presented in order to deal with eigenstress or
eigenstrain distributions applied to a nonlinear
viscoelastic composite.

In summary, this Special Issue offers a se-
lected cross section of recent research activities
that rely on a particular computational homog-
enization technique to upscale the mechanics of
materials. This single issue does not aim to pro-
vide a complete overview, but it hopefully con-
tributes to the future development of computa-
tional homogenization frameworks applied to
engineering materials. I would like to thank
all the authors for their valuable contributions,
as well as all the reviewers for the consider-
able amount of time that they have spent on
their task. The many critical remarks and com-
ments provided have undoubtedly lead to a
considerable increase in the quality of the pa-
pers. Finally, I would like to thank Professor
Jacob Fish for inviting me to assemble this Spe-
cial Issue and providing the necessary support
with which to do so.
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